
Fast Fourier Transform (FFT)

Problem: we need an efficient way to compute the DFT. The answer is the FFT.

Consider a data sequence and its DFT:x x x x N= −[(), (),..., ()]0 1 1

1,...,0,)()(
1

0

−== ∑
−

=

NkwnxkX
N

n

kn
N

We can always break the summation into two summations: one on even indices (n=0,2,4,…)
and one on odd indeces (n=1,3,5,…), as

1,...,0,)()()(−=+= ∑ ∑ NkwnxwnxkX
evenn oddn

kn
N

kn
N

X k x n w x n wN
kn

n even
N

kn

n odd

() () ()= +∑ ∑

{ {

wN / 2
wN / 2

since ()w e e wN
j N j N

N
2 2 2 2 2

2= = =− −π π/ (/)
/

Let us assume that the total number of points N is even, ie N/2 is an integer. Then we can write
the DFT as

() ()

= + +

= + +

=

−

+

=

−

=

−

=

−

∑ ∑

∑ ∑

x m w x m w

x m w w x m w

N
k m

m

N

N
k m

m

N

N

km

m

N

N
k

N

km

m

N

() ()

() ()

() ()2 2 1

2 2 1

2

0

2
1

2 1

0

2
1

2

0

2
1

2

0

2
1

The two summations are two distinct DFT’s, as we can see below

X k x m w w x m wN
km

m

N

N
k

N
km

m

N

() () ()/ /= + +
=

−

=

−

∑ ∑2 2 12
0

2
1

2
0

2
1

N-point DFT N/2-point DFT N/2-point DFT= + wN
k

X k X k w X kN
e

N N
k o

N() () ()/ /= +2 2

for k=0,…N-1, where

[] []
[] []

X DFT x x x x x N

X DFT x x x x x N

e
N

even even

o
N

odd odd

/

/

, (), (),..., () ;

, (), (),..., () .

2

2

0 2 2

1 3 1

= = −

= = −

X k X k w X kN
e

N N
k o

N() () ()/ /= +2 2

The problem is that in the expression

the N-point DFT and the N/2 point DFT’s have different lengths, since we define them as

1,...,0),(−= NkkX N

12/,...,0),(2/ −= NkkX N

For example if N=4 we need to compute

)]3(),2(),1(),0([44444 XXXXX =

from two 2-point DFT’s

)]1(),0([

)]1(),0([

22

22

ooo

eee

XXX

XXX

=

=

So how do we compute and ?)2(4X)3(4X

We use the periodicity of the DFT, and relate the N-point DFT with the two N/2-point DFT’s as
follows

X k X k w X k

X k
N

X k w X k

N
e

N N
k o

N

N
e

N N
k o

N

() () ()

() (),

/ /

/ /

= +

+




 = −

2 2

2 22 k
N

= −0
2

1,... ,

where we used the facts that

• the DFT is periodic and in particular X k X k
N

N N/ /() ;2 2 2
= +







w w e wN
k N

N
k j N N

N
k+ −= = −/ (/) /2 2 2π•

General Structure of the FFT (take, say, N=8):

x()0
x()2
x()4
x()6

x ()1

x()3

x()5

x()7

X e ()0
X e ()1

X e ()2

X e ()3

X o ()0
X o ()1

X o ()2

X o ()3

w8
0

w8
1

w8
2

w8
3

4-DFT

4-DFT

X ()0

X ()1

X ()2

X ()3

X ()4

X ()5

X ()6

X ()7

where a

b

a b+

a b−

is called the butterfly.

Same for the 4-DFT:

2-DFT

2-DFT

2-DFT

2-DFT

x()0

x()4

x()2

x()6

x ()1

x()5

x()3

x()7

w4
0

w4
1

w4
1

w4
0

X e ()0

X e ()1

X e ()2

X e ()3

X o ()0

X o ()1

X o ()2

X o ()3

4-DFT

4-DFT

Finally the 2-DFT’s have a simple expansion:

X x x
X x x

2

2

0 0 1
1 0 1

() () ()
() () (),

= +
= −

x()1 X ()1

X ()0
2-DFT

x()0

since

∑
=

+==
1

0
222)1()0()()(

n

kkn xwxwnxkX

with ()kkjk ew 12 −== − π

Put everything together:

x()0

x()4

x()2

x()6

x()1

x()5

x()3

x()7

)0(X

N/2 mult/stage

× stagesN2log =
N

N
2 2log

)1(X

)2(X

)3(X

)4(X

)5(X

)6(X

)7(X

0
4w

1
4w

0
4w

1
4w

0
8w

1
8w

2
8w

3
8w

N adds/stage

mult

NN 2log adds

We say that, for a data set of length ,

bNNaoperationsofnumberei +≤ 2log..

complexity of the FFT is { }NNO 2log

for some constants a,b.

On the other hand, for the same data of length N ,

LN 2=

complexity of the DFT is { }2NO

Since, from the formula, 1,...,0,)()(
1

0

−== ∑
−

=

NkwnxkX
N

n

kn
N

N ops/term × N terms = N ops2

This is a big difference in the total number of computations, as shown in this graph:

N

complexity

N0 2000 4000 6000 8000 10000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

DFT

FFT

